
Adaptive Person-Following Algorithm Based on Depth Images and

Mapping*

Guillaume Doisy1, Aleksandar Jevtić2, Eric Lucet2 and Yael Edan1

Abstract— Person following by a mobile autonomous robot
includes two tasks, person tracking and safe robot navigation.
Two person-following algorithms that use depth images from
a Microsoft Kinect sensor for person tracking are proposed.
The first one, the path-following algorithm, reproduces the
path of the person in the environment. The second one, the
adaptive algorithm, uses in addition a laser range finder for
localization and dynamically generates the robot’s path inside
a pre-mapped environment, taking into account the obstacles
locations. The Kinect was mounted on a pan-tilt mechanism
to allow continuous person tracking while the robot followed
the generated path. The two algorithms were tested and their
performance compared in a series of trials where the robot had
to follow a person walking in an environment with obstacles.
With both algorithms the robot could perform continuous
person tracking when the obstacles were lower than the height
of the camera mount. With the adaptive algorithm the distance
travelled by the robot was 29.6% shorter than with the path-
following algorithm; however the path-following algorithm does
not require a pre-build map of the environment.

I. INTRODUCTION

Person following for mobile robots is advantageous in

applications that require close human-robot interaction. In

some applications, such as for a robot companion, having

this feature is very important. There are many challenges in

development of efficient and human-like person following

robot behaviour, e.g., safety of humans and robots, user

acceptance or ethical issues.

Person following consists of two tasks, namely person

tracking and robot navigation. In real-world applications

the person-following algorithms must take into account the

environment constraints. For indoor applications mapping the

environment allows safer and more efficient robot navigation,

but often it must also consider the movement of objects

and other people. In such situations, the person-following

behavior must be adaptive so the robot can update the path

to the desired destination point taking into account the new

constraints.

Person detection and tracking is the first necessary step in

the person following task. Many proposed person-following

algorithms use vision as input [1], [2]. Measurements from

*This research was supported by the FP7 EU-funded ITN in the Marie-
Curie People Programme: INTRO, grant agreement no. 238486, and par-
tially supported by the Paul Ivanier Center for Robotics Research and
Production Management, and by the Rabbi W. Gunther Plaut Chair in
Manufacturing Engineering, Ben-Gurion University of the Negev.

1G. Doisy and Y. Edan are with the Department of Industrial Engineering
and Management, Ben-Gurion University of the Negev, Beer Sheva 8410,
Israel doisyg@post.bgu.ac.il, yael@bgu.ac.il

2A. Jevtić and E. Lucet are with Robosoft, Technopole
d’Izarbel, F-64210, Bidart, France {aleksandar.jevtic,
eric.lucet}@robosoft.fr

a laser range finder (LRF) can be used to extract the

patterns of the person’s legs [3]; however, similar patterns

can represent chairs and tables which makes correct detection

difficult. To improve the tracking performance some authors

proposed fusion of LRF with infrared camera [4] or with

omnidirectional camera [5].

Depth images have been used for visual tracking [6]. They

provide information about the distance of the objects in the

image. Detection results can be improved through fusion

with measurements from other sensors [7] or they can be

compared with the stored templates in a pre-built knowledge

base [8]. Some methods propose using input from multiple

cameras [9], [10].

Recently released Microsoft Kinect sensor is a low-cost

and efficient alternative for depth image-based person track-

ing [11], [12]. Many research groups reported their activity

in working on Kinect features, but few have published their

results on applications to person tracking [10], [13], SLAM

[14], or improved environment mapping [15].

Person following with a mobile robot must first include

person detection and tracking. Further, robot navigation and

path generation are applied. The initiation of these tasks can

be human-operated or autonomous [16]. Various methods

for person-following propose using LRF measurements for

person legs detection [17], [3]; however, detected patterns

are easily confused with tables and chairs, or other people’s

legs. Color and texture of the person’s clothes were used

for vision-based tracking and following in [18], [19]. Fusion

of LRF and vision-based sensors showed improved person

detection [20], [21], [22], [23]. Some authors proposed

combining vision-based detection with RFID tracking [24],

[25].

A person-following algorithm based on direction following

was proposed in [26]. The input from a pair of stereo cameras

was used to combine feature detection with pre-built motion

models. Another method for robot motion planning based on

the learned human motion patterns was proposed in [27].

Mapping of the environment in which the robot operates

can simplify the motion-planning task [28]. Mapping and

SLAM for mobile robots is a vast field of study [29].

Numerous methods have been proposed based on the input

from LRF [30], vision-based sensors [31], 3D images [32],

[14], time-of-flight cameras [33], etc. In this paper, path

planning using a pre-built map is proposed. This method is

compared with a method that does not benefit from mapping,

and shows how mapping can allow the robot to adapt to the

distribution of obstacles.

Workshop on Robot Motion Planning: 
Online, Reactive, and in Real-time
2012 IEEE/RSJ International Conference on 
Intelligent Robots and Systems, IROS 2012
Vilamoura, Algarve, Portugal, October 7-12, 2012



II. METHODOLOGY

A. Algorithms

Two person-following algorithms are developed and com-

pared: a path-following algorithm and an adaptive algorithm.

These two algorithms use other algorithms to control the

robot and to track the position of the person and estimate its

position (described in Section III).

B. Hardware

The two algorithms were implemented on a generic dif-

ferential drive mobile platform with two propulsive wheels

and two castor wheels, which comes with basic navigation

functions (Robosoft robuLAB10 robotic platform). The robu-

LAB10 was customized with a rigid structure including three

tubes and a tray for laptop PC (Figure 1). On the top of this

structure a TRACLabs Biclops pan-tilt mechanism (PT-M)

and a Kinect sensor were added. For navigation purposes, the

base is equipped with a SICK S300 LRF, which is positioned

at the height of 0.24m and provides distance measurements

of up to 30m in an angular field of view of 270◦.

The pan-tilt mechanism has a tilt range of 120◦ and a pan

range of 360◦ with a maximum angular velocity of 170◦/s
and a maximum angular acceleration of 3000◦/s2. The

precision of the angular position measurements is ±0.01◦.

The mechanism can support a maximum payload of 4kg
which is more than the weight of the Kinect sensor. In all

experiments, the tilt value was set to 0◦ and person tracking

was performed only in the horizontal plane, using the pan

axis of the pan-tilt mechanism only. The communication

between the laptop PC and the mechanism is maintained

via a USB port with a data transfer rate of up to 416kbps.

Fig. 1. RobuLAB10 robotic platform with Biclops pan-tilt mechanism,
Kinect sensor, and laptop PC.

The Kinect sensor is equipped with an infrared light

projector, a depth sensor, a RGB camera, and a multi-array

microphone. It also has a motorized tilt that was disabled

and was used only for sensor positioning. The depth sensor

range is from 0.8m to 6m with the vertical viewing angle of

43◦ and horizontal viewing angle of 57◦. It provides depth

images at the resolution of 640× 480 pixels at the maximal

frame rate of 30fps. The Microsoft Kinect SDK provides

person detection and person joints position tracking features

up to 4m.

C. Experimental setup

Two sets of experiment were conducted. The first set

focused on the performance evaluation of the path-following

person following algorithm and the second set focused on the

adaptive person following algorithm. In all experiments, the

person was instructed not to assist the robot and to walk at a

constant speed along a marked path on the ground, regardless

of the robot’s tracking and/or following performance. This

marked path on the ground makes the person travel around

obstacles as seen in Figure 3 and 4.

D. Performance analysis

The following performance metrics were used for each

trial of each experimental setups to evaluate the proposed

person-following algorithms: 1) Path-completion ratio: the

length of the ground path from the person start point to the

closest point of the robot end point, divided by the total

length of the ground path, 2) Number of loss-of-track events:

number of events when tracking of the person was lost in

a single trial; loss of tracking is defined when no position

estimation is provided by the Kinect SDK for a period longer

than 500ms, and 3) Robot path length to person path length

ratio: the distance travelled by the robot divided by the

distance travelled by the person.

For each set of experiment, 10 trials were conducted. For

the path-following algorithm evaluation, the error between

the person’s path and robot’s path was computed in addition

to the metrics described above. This path error is calculated

by resampling robot path data to regular space interval of

1cm and calculating for each resampled point of the robot

path the closest distance to the ground path followed by the

person.

III. ALGORITHMS

A. Robot control

The robuLAB10 platform uses Robosoft robuBOX open

source library. The robuBOX is based on the Microsoft

Robotics Developer Studio (MRDS) and written in C#. Its

most important component is the Core, which contains the

definitions of robots actuators and sensors. All other com-

ponents interact through these definitions either by imple-

menting or using them. For robot navigation four robuBOX

features were exploited, namely the obstacle collision de-

tection, the localization, the differential-drive controller and

the path follower. The localization component uses odometry

from the wheels to estimate its position and readings from

a LRF continuously correct the odometry error if a map of

the environment is available.

The obstacle collision detection feature uses the LRF

distance measurements and applies two parameters to control

the robot’s motion. At distances between 0.3m and 1m from

an obstacle the robot speed is reduced proportionally to the

distance value. The robot is finally stopped at the distance of

0.3m from the obstacle. The distances are calculated within



the robot frame with its origin in the point Pm located at

mid-distance of the actuated wheels.

The differential-drive controller is used to set robot’s linear

and angular speeds. The wheels’ velocities are derived from

these values by the robot’s low-level controller.

The path follower feature allows the robot to follow a

list of path points that are added to the buffer and executed

sequentially. The path follower implements Morin-Samson’s

path following with no orientation control [34]. We consider

a path C in the plane of motion, as illustrated on Figure 2.

Let us define three frames F0, Fm, and Fs, as follows. F0 =
{0,

−→
i ,

−→
j } is a fixed global frame, Fm = {Pm,

−→
im,

−→
jm} is a

frame attached to the mobile robot with its origin in the point

Pm, and Fs = {Ps,
−→
is ,

−→
js }, which is indexed by the path’s

curvilinear abscissas, is such that the unit vector
−→
is tangents

C. The control point P is attached to the robot chassis, with

the coordinates (l1, l2) expressed in the basis of Fm. In the

experiments the following values were set: l1 = 0.15m and

l2 = 0.

Fig. 2. Representation of the path in the robot motion plane. (Morin &
Samson, 2008)

To determine the equations of motion of P with respect to

the path C let us define d as the distance between P and C,

and θe = θm − θs as the angle characterizing the orientation

of the robot chassis with respect to the frame Fs. Where

θm is the orientation of the robot chassis in the global frame

F0.The control objective is to stabilize the distance d at zero.

For that, the following feedback control law was applied:

u2 = u1

(

tan θe
l1

− k0 · d

)

(1)

where u1 and u2 represent the intensities of the robot’s

longitudinal and angular velocity, respectively, and k0 is a

constant. The detailed proof that d exponentially converges to

zero when u1 is constant and θe ∈ (−π/2, π/2) can be found

in (Morin & Samson, 2008). The following values were set

to u1 = 0.5m/s and k0 = 20. As a measure of precaution,

the maximal heading error was set to θe,max = 60◦, which

initiates a recovery procedure that stops the robot and sends

it to the last path point in the buffer.

B. Person tracking and position estimation

Tracking of person’s skeleton joints is performed for each

depth-image frame in the Kinect SDK, using no temporal

information [12]. The algorithm uses the variation in depth

to find different body parts and applies Random Decision

Forests to compute estimated joint positions. It is also able to

distinguish between two different persons. The 3D position

of the head joint outputted by the algorithm was used to

estimate the ground X and Y position of the person. This

allows keeping track of the person position in presence of

obstacles small in height causing an occlusion of the lower

body parts. The outputted person ground position estimation

is in the frame of reference of the Kinect sensor. It must

be converted in the global frame of reference in order to be

used by the path-following algorithm.

To calculate the position estimation in the global frame

three direct orthonormal frames of reference were consid-

ered:

1) The fixed global frame F0 = {0,
−→
i0 ,

−→
j0}.

2) The frame attached to the robot Fm = {Pm,
−→
im,

−→
jm}.

Pm is at the center of the robot and both
−→
im and

−→
jm are

in the horizontal plane;
−→
im is pointing in the forward

direction of the robot.

3) The frame attached to the Kinect sensor Fk =
{Pk,

−→
ik ,

−→
jk}. Pk is at the center of the Kinect sensor

and both
−→
ik and

−→
jk are in the horizontal plane;

−→
ik is

pointing in the forward direction of the sensor.

Pm in F0, denoted Pm(F0), and the angle between
−→
i

and
−→
im, denoted θm(F0), are known from odometry. Pk in

Fm, denoted Pk(Fm), is known from the hardware con-

figuration of the robot: Pk(Fm) = (−0.08, 0). The an-

gle between
−→
im and

−→
ik , denoted θk(Fm), is given by the

pan axis position measurement of the pan-tilt mechanism.

The position of the person in Fk, denoted Person(Fk) =
(XPerson(Fk), YPerson(Fk)) is given by the output of the

Kinect sensor. The angle between the forward direction of

the Kinect sensor,
−→
ik , and the person, denoted θPerson(Fk),

can be calculated:

ΘPerson(Fk) = tan

(

YPerson(Fk)

XPerson(Fk)

)

(2)

The position of the person in Fm, denoted Person(Fm) =
(XPerson(Fm), YPerson(Fm)) can be calculated:

(3)

Person(Fm) = Person(Fk) ∗
(

cos
(

θk(Fm)

)

sin
(

θk(Fm)

)

− sin
(

θk(Fm)

)

cos
(

θk(Fm)

)

)

+

Pk(Fm)

The angle between the forward direction of the robot,
−→
im,

and the person, denoted θPerson(Fm), can be calculated:

ΘPerson(Fm) = tan

(

YPerson(Fm)

XPerson(Fm)

)

(4)

Finally, the position of the person in F0, denoted

Person(F0) = (XPerson(F0), YPerson(F0)), can be calcu-

lated:

(5)

Person(F0) = Person(Fm) ∗
(

cos
(

θm(F0)

)

sin
(

θm(F0)

)

− sin
(

θm(F0)

)

cos
(

θm(F0)

)

)

+

Pm(F0)



C. Pan-tilt mechanism control

In order to make the Kinect sensor always point in the

direction of the person tracked, a control law of the pan axis

of the pan-tilt mechanism was developed. The output of this

control law is an angular speed command of the pan axis,

denoted θ̇k(Fm)(Command).

A first approach to compute the speed command was to

implement a P-controller using the angular position of the

person in the Kinect frame, θPerson(Fk), as the measurement

and a 0◦ angle as the target, θPerson(Fk)(Target).

θ̇k(Fm)(P−control) = Kp(Pan) · error

= Kp(Pan) ·
(

θPerson(Fk)(Target) − θPerson(Fk)

)

(6)

θPerson(Fk) is given by equation (2) and

θPerson(Fk)(Target) = 0◦.

Then the angular speed command is set equal to the output

of the P-controller:

θ̇k(Fm)(Command) = θ̇k(Fm)(P−control) (7)

We used Kp(Pan) = 4 s−1. This first approach using

equation (6) for computing the speed command is able to

maintain the sensor in the direction of the tracked person

when the robot is not moving. However, when the robot is

moving, the system is not reactive enough to keep track of the

person. Loss of tracking happens when the robot is rotating

or turning. To compensate for the robot rotation, a second ap-

proach was developed. Information from the odometry pose

estimation is used to calculate the angular speed of the robot

in F0, denoted θ̇m(F0), from two successive measurements

of the robot orientation in the global frame: θm(F0)(t−1) and

θm(F0)(t).

θ̇m(F0) =
θm(F0)(t) − θm(F0)(t−1)

T (t)− T (t− 1)
(8)

where T (t) and T (t − 1) are the time of the current

measurement of angular speed and the time of the previous

measurement of angular speed, respectively.

Using the additive inverse of the angular speed yields a

robot rotation compensation speed command.

Finally, the speed command to send to the pan axis of the

pan-tilt mechanism is calculated by summing the output of

the P-controller and the robot rotation compensation speed

command:

(9)
θ̇k(Fm)(Command) = θ̇k(Fm)(P−control) +

θ̇k(Fm)(Counter−rotation)

This approach using equation (9) is the one used in this

work.

This algorithm requires an estimation of the person posi-

tion. In case of a loss of tracking, the recovery procedure

continues to apply the last pan axis speed command for

500 ms and then setting the pan axis to its neutral position,

θk(Fm) = 0◦, while waiting for a new person position

estimation.

D. Path-following algorithm

The principle of the path following algorithm is to make

the robot take the same path as the person it follows. It

uses the succession of person position estimations in F0,

denoted Person(F0), and is calculated from equation (5), to

generate a set of points to send to the robot path follower

previously described in the robot control section. However,

the Person(F0) points cannot be directly sent to the robot

path follower. They are too noisy when the robot is moving,

as described in the experimental results.

Hence the Person(F0) points are first filtered:

• Points which imply that the person accelerates faster

than 1 g are ignored.

• Points which imply that the person moves faster than

1.5m/s are ignored.

• Jitter reduction of 15cm radius is applied: if a point

is not farther than 15cm from the previous point, it is

ignored.

Then the path connecting the succession of points is

smoothed using a moving average technique of span 5.

Finally, as the robot path follower needs a path with points

separated by an interval of 2cm to properly work, points

are interpolated by using uniform cubic B-splines. This

also ensures further smoothing of the path. After filter-

ing, smoothing and interpolation, the output point, denoted

Person(F0)(Filtered) is sent to the robot path follower.

E. Adaptive algorithm

The idea of the adaptive algorithm is to continuously re-

compute the best path for the robot to go to the person

taking into account the obstacles in the environment. Hence,

if a shorter way than the path the person took to go to

its current position exists, the robot will be able to use it.

The optimal path is computed using an implementation of

the Karto library which uses the Monte Carlo Localization

algorithm [35].

The adaptive algorithm uses the filtered and smoothed

person position estimation, Person(F0)(Filtered), described

in the previous section. Each time a position estimation is

received, it is compared to the last position estimation used to

generate the robot path. If the distance that separates these

two position estimations is superior to 50 cm, a new path

using the last position estimation is computed and sent to

the robot. This approach is needed in order to limit the

frequency of the re-computation of the path which, when too

high, saturates the computer and makes the robot oscillate

and change its course too often.

IV. RESULTS AND DISCUSSION

A. Path-following algorithm

For each of the 10 trials the robot was able to follow the

person until the end of the path (Table I). The average 0.9

loss-of-track event per trial did not affect the performance of

the following thanks to the efficiency of the tracking recovery

procedure. Figure 3 illustrates this success and shows both



Fig. 3. Person and robot paths of a sample trial of the evaluation of the
path-following algorithm. TABLE I

EXPERIMENTAL RESULTS OF THE EVALUATION OF THE

PATH-FOLLOWING ALGORITHM

Path-following algo-
rithm

Average Max Min Standard Deviation

Path-completion suc-
cess ratio [%]

100 100 100 0

Number of loss-of-
track events per trial

0.9 2 0 0.88

Robot path length to
person path length ra-
tio [%]

100.5 103.7 97.6 1.6

Path Error [cm] 11.04 40.27 0 7.64

robot and person path close from each other along with the

obstacle setups from a typical trial.

The path taken by the person is reproduced accurately

with an average path error of 11.04 cm, a standard deviation

of 7.34 cm and a maximum error of 40.27 cm (Table I).

The agility and accuracy of this method are fully understood

when comparing the results with the 40 cm width of our

robot. Thanks to this accuracy it is possible to perform person

following in an environment with obstacles without the need

of detecting and actively avoid the obstacles.

However, when comparing the distance covered by the

human and the robot it appears that they are nearly the same.

This is due to the principle of this algorithm: the path taken

by the person is accurately followed and hence is not optimal;

in case of a possible shorter path, it will not be taken by the

robot.

B. Adaptive algorithm

In term of path-completion ratio the adaptive algorithm

performed as good as the path-following algorithm with a

100% completion for all the trials; and similarly it was not

affected by the nearly same average 1.1 loss-of-track event

per trial. Figure 4 illustrates this success but shows also how

the adaptive algorithm enables the robot to take a shorter path

when it can. Over the 10 trials the distance travelled by the

robot was 70.9% of the distance travelled by the person, with

a maximum of 82.1%, a minimum of 57.6% and a standard

deviation of 6.5%.

Hence, the adaptive algorithm presents the advantage of

minimizing the distance travelled by the robot compared to

Fig. 4. Person and robot paths of a sample trial of the evaluation of the
path-following algorithm. TABLE II

EXPERIMENTAL RESULTS OF THE EVALUATION OF THE ADAPTIVE

ALGORITHM

Adaptive algorithm Average Max Min Standard Deviation

Path-completion suc-
cess ratio [%]

100 100 100 0

Number of loss-of-
track events per trial

1.1 3 0 1.1

Robot path length to
person path length ra-
tio [%]

70.9 82.1 57.6 6.5

the path-following algorithm. However, this requires a pre-

build map of the environment.

V. CONCLUSIONS AND FUTURE WORK

Two person-following algorithms that use depth infor-

mation from a Kinect sensor were presented. Both use

the Kinect sensor mounted on a pan-tilt mechanism for

360-angle tracking and implement path generation from a

sequence of estimated person’s positions. The path following

algorithm generates sequentially a path that reproduces the

path taken by the person using each new updated position

of the person. On the other hand, the adaptive algorithm, re-

computes from scratch the shortest path to the person each

time the person has moved more than 50 cm. Both person-

following algorithms were equally successful in following

the person with a 100% path completion ratio. However,

the adaptive algorithm minimized the distance travelled by

the robot: it travelled in average 29.1% less than the person

it followed whereas the path-following algorithm made the

robot travel in average 0.5% more. Yet which algorithm is

best to use is subject to discussion. The adaptive algorithm

minimizes the distance travelled but presents the important

constraint of needing a-priori information about the environ-

ment (i.e. a map). This can be an advantage in situations

where the cost of travel of the robot is expensive or in

situations where the maximum speed of the robot is inferior

to the walking speed of the person followed.

Future work should focus on path optimization without

a-priori information. The case of the robot standing in the

way of the person was not investigated in this work. Hence

algorithms must be developed to adapt the path of the robot



in order not to block the way of the person when she/he

changes suddenly of direction. Furthermore, strategies to

recover from complete occlusions from other persons or

walls should be improved.

REFERENCES

[1] T. B. Moeslund, A. Hilton, and V. Krüger, “A survey of advances in
vision-based human motion capture and analysis,” Computer Vision

and Image Understanding, vol. 104, no. 2-3, pp. 90–126, Nov. 2006.

[2] Z. Jia, A. Balasuriya, and S. Challa, “Vision based data fusion
for autonomous vehicles target tracking using interacting multiple
dynamic models,” Computer Vision and Image Understanding, vol.
109, no. 1, pp. 1–21, Jan. 2008.

[3] J. M. Martinez-Otzeta, A. Ibarguren, A. Ansuategi, and L. Susper-
regi, “Laser Based People Following Behaviour in an Emergency
Environment,” in Proceedings of the 2nd International Conference on

Intelligent Robotics and Applications (ICIRA ’09), 2009, pp. 33–42.

[4] Y. Motai, S. Kumar Jha, and D. Kruse, “Human tracking from a
mobile agent: Optical flow and Kalman filter arbitration,” Signal

Processing: Image Communication, vol. 27, no. 1, pp. 83–95, Jan.
2012.

[5] M. Kobilarov, G. Sukhatme, J. Hyams, and P. Batavia, “People
tracking and following with mobile robot using an omnidirectional
camera and a laser,” in Proceedings 2006 IEEE International

Conference on Robotics and Automation, 2006. ICRA 2006., no. May.
IEEE, 2006, pp. 557–562.

[6] Y. Salih and A. S. Malik, “Comparison of stochastic filtering
methods for 3D tracking,” Pattern Recognition, vol. 44, no. 10-11,
pp. 2711–2737, Oct. 2011.

[7] R. Muñoz Salinas, E. Aguirre, and M. Garcı́a-Silvente, “People
detection and tracking using stereo vision and color,” Image and

Vision Computing, vol. 25, no. 6, pp. 995–1007, Jun. 2007.

[8] J. Satake and J. Miura, “Robust stereo-based person detection and
tracking for a person following robot,” in ICRA 2009 Workshop on

People Detection and Tracking, no. May, 2009.

[9] R. Muñoz Salinas, R. Medina-Carnicer, F. Madrid-Cuevas, and
a. Carmona-Poyato, “Particle filtering with multiple and heterogeneous
cameras,” Pattern Recognition, vol. 43, no. 7, pp. 2390–2405, Jul.
2010.

[10] M. Luber, L. Spinello, and K. O. Arras, “People tracking in RGB-D
Data with on-line boosted target models,” in Proceedings of the

2011 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS 2011). IEEE, Sep. 2011, pp. 3844–3849.

[11] L. A. Schwarz, A. Mkhitaryan, D. Mateus, and N. Navab, “Human
skeleton tracking from depth data using geodesic distances and
optical flow,” Image and Vision Computing, vol. 30, no. 3, pp.
217–226, Dec. 2012.

[12] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake, “Real-time human pose
recognition in parts from single depth images,” in The 24th

IEEE Conference on Computer Vision and Pattern Recognition

(CVPR 2011). Colorado Springs, CO, USA: IEEE, Jun. 2011, pp.
1297–1304.

[13] F. Hoshino and K. Morioka, “Human following robot based on
control of particle distribution with integrated range sensors,” in 2011

IEEE/SICE International Symposium on System Integration (SII).
IEEE, Dec. 2011, pp. 212–217.

[14] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and
W. Burgard, “An Evaluation of the RGB-D SLAM System,” in
Proceedings of the 2012 IEEE International Conference on Robotics

and Automation (ICRA 2012), vol. 3, no. c. IEEE, 2012.

[15] M. Camplani and L. Salgado, “Efficient Spatio-Temporal Hole Filling
Strategy for Kinect Depth Maps,” in IS&T/SPIE Int. Conf. on 3D

Image Processing (3DIP) and Applications, 2012.

[16] H. Latif, N. Sherkat, and A. Lotfi, “Information acquisition using eye-
gaze tracking for person-following with mobile robots,” Information

Acquisition, vol. 06, no. 03, pp. 147–157, 2009.

[17] E. A. Topp and H. I. Christensen, “Tracking for following and
passing persons,” in Proceedings of the 2005 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS 2005). IEEE,
2005, pp. 2321–2327.

[18] T. Yoshimi, M. Nishiyama, T. Sonoura, H. Nakamoto, S. Tokura,
H. Sato, F. Ozaki, N. Matsuhira, and H. Mizoguchi, “Development
of a Person Following Robot with Vision Based Target Detection,”
in Proceedings of the 2006 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS 2006). IEEE, Oct. 2006, pp.
5286–5291.

[19] T. Sonoura, T. Yoshimi, M. Nishiyama, H. Nakamoto, S. Tokura,
and N. Matsuhira, “Person Following Robot with Vision-based and
Sensor Fusion Tracking Algorithm,” in Computer Vision, X. Zhihui,
Ed. Vienna, Austria: InTech, 2008, no. November, pp. 519–538.

[20] C. Cauchois, F. de Chaumont, B. Marhic, L. Delahoche, and
M. Delafosse, “Robotic assistance: an automatic wheelchair tracking
and following functionality by omnidirectional vision,” in Proceedings

of the 2005 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS 2005). IEEE, 2005, pp. 2560–2565.
[21] X. Ma, C. Hu, X. Dai, and K. Qian, “Sensor integration for person

tracking and following with mobile robot,” in Proceedings of the

2008 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS 2008). IEEE, 2008, pp. 3254–3259.
[22] A. Konigs and D. Schulz, “Fast visual people tracking using a

feature-based people detector,” in Proceedings of the 2011 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS

2011). IEEE, Sep. 2011, pp. 3614–3619.
[23] V. Alvarez-Santos, X. Pardo, R. Iglesias, a. Canedo-Rodriguez,

and C. Regueiro, “Feature analysis for human recognition and
discrimination: Application to a person-following behaviour in a
mobile robot,” Robotics and Autonomous Systems, vol. 60, no. 8, pp.
1021–1036, Aug. 2012.

[24] T. Germa, F. Lerasle, N. Ouadah, V. Cadenat, and M. Devy, “Vision
and RFID-based person tracking in crowds from a mobile robot,”
in Proceedings of the 2009 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS 2009), vol. 3. IEEE, Oct.
2009, pp. 5591–5596.

[25] T. Germa, F. Lerasle, N. Ouadah, and V. Cadenat, “Vision and
RFID data fusion for tracking people in crowds by a mobile robot,”
Computer Vision and Image Understanding, vol. 114, no. 6, pp.
641–651, Jun. 2010.

[26] Z. Chen and S. T. Birchfield, “Person following with a mobile
robot using binocular feature-based tracking,” in Proceedings of the

2007 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS 2007). IEEE, Oct. 2007, pp. 815–820.
[27] K. Qian, X. Ma, X. Dai, and F. Fang, “Robotic Etiquette: Socially

Acceptable Navigation of Service Robots with Human Motion Pattern
Learning and Prediction,” Journal of Bionic Engineering, vol. 7,
no. 2, pp. 150–160, Jun. 2010.

[28] M. Kobilarov, “Cross-entropy motion planning,” The International

Journal of Robotics Research, vol. 31, no. 7, pp. 855–871, May 2012.
[29] G. Dissanayake, S. Huang, Z. Wang, and R. Ranasinghe, “A review

of recent developments in Simultaneous Localization and Mapping,”
in 2011 6th International Conference on Industrial and Information

Systems. IEEE, Aug. 2011, pp. 477–482.
[30] J. Miura, J. Satake, M. Chiba, Y. Ishikawa, K. Kitajima, and

H. Masuzawa, “Development of a Person Following Robot and Its
Experimental Evaluation,” in Proceedings of the 11th International

Conference on Intelligent Autonomous Systems, Ottawa, Canada, 2010,
pp. 89–98.

[31] W. L. D. Lui and R. Jarvis, “A pure vision-based topological SLAM
system,” The International Journal of Robotics Research, vol. 31,
no. 4, pp. 403–428, Feb. 2012.

[32] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige,
“The Office Marathon: Robust navigation in an indoor office
environment,” in Proceedings of the 2010 IEEE International

Conference on Robotics and Automation (ICRA 2010). Ieee, May
2010, pp. 300–307.

[33] S. Almansa-Valverde, J. C. Castillo, and A. Fernández-Caballero,
“Mobile robot map building from time-of-flight camera,” Expert

Systems with Applications, vol. 39, no. 10, pp. 8835–8843, Aug.
2012.

[34] P. Morin and C. Samson, “Motion control of wheeled mobile robots,”
pp. 799–826, 2008.

[35] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent

Robotics and Autonomous Agents). The MIT Press, 2005.


