
Real-Time Robot Trajectory Generation with Python*

Morten Lind1, Lars Tingelstad1 and Johannes Schrimpf2

Abstract— Design and performance measurements of a
framework for external real-time trajectory generation for
industrial robots is presented. The framework is implemented
entirely in Python. It serves as a proof of concept for performing
real-time trajectory generation in Python, from a PC with
connection to the motion controller in an industrial robot
controller. Robotic applications requiring advanced, custom
trajectory generation, and a high level of integration with
sensors and other external systems, may benefit from the
efficiency of Python in terms of reduced development time,
lower code complexity, and a large amount of accessible
software technologies.

The presented framework, dubbed PyMoCo, supplies a set
of simple trajectory generators, which are comparable to those
found in contemporary industrial robot controllers. Designing
and implementing new trajectory generators and integrating or
extending the included trajectory generators is central to the
design of PyMoCo. Laboratory applications involving real-time
sensor- and vision-based robot control has demonstrated the
usability of PyMoCo as a motion control framework and Python
as a robotics application platform. For robotics applications
with a control frequency not exceeding a couple of hundred
Hz, computation deadlines no shorter than some couples of
milliseconds and jitter tolerance at the order of a millisecond,
PyMoCo may be considered a feasible and flexible framework
for testing and prototype development.

I. INTRODUCTION

Robotic tasks of limited complexity such as simple posi-

tioning tasks, trajectory following or pick-and-place appli-

cations in well structured environments, are straightforward

to develop and integrate in the application platform of

the native robot controller using current commercial robot

control software (de Schutter, et al. (2007) [1]).

If robots communicate or interact with other robots or

systems, the implementation is most often based on vendor-

specific proprietary protocols and with limited performance

specifications that preclude online sensor-based control (De-

cré (2010) [2]). However, there is a strong market pull

for more flexible and cost effective robotic systems which

are able to integrate a multitude of sensors and operate

in unstructured environments. An example of this is the

increased use of industrial robots in small and medium-

sized manufacturing enterprises, often characterized by a

combination of low-volume, high variety, and custom-made

*The work presented has been financially supported by the The Research
Council of Norway through the research programmes “SFI Norman”,
“BIA Robust, industriell sømautomatisering” and “KMB Next Generation
Robotics”.

1Department of Production and Quality Engineering, Norwegian Univer-
sity of Science and Technology, Trondheim, Norway

2Department of Engineering Cybernetics, Norwegian University of Sci-
ence and Technology, Trondheim, Norway

e-addresses: {morten.lind, lars.tingelstad,
johannes.schrimpf} at ntnu.no

goods (EURON (2005) [3]). In order to meet these requests

from the industry, new methods for programming and system

integration are needed.

Many research laboratories therefore attempt to circum-

vent the application platform of the native robot controller,

which either precludes real-time interaction or does not

offer an appropriate set of technologies for solving the

pertinent problem, in order to directly interface the motion

control level. The motion control level is described as the

entity providing a real-time interface for addressing the joint

configuration space of the robot arm at an intermediate-level

frequency; in the range from 100Hz to 1 kHz. The ability to

address the motion control level from an external application

platform may thus give full control of choosing hardware

peripherals, programming software and control algorithms

(Decré (2011) [2]). The motion control level is often referred

to as low-level control in literature.

A. Related Work

Applications that utilize low-level interfaces, to the mo-

tion control level, are usually implemented with compiled,

intermediate-level languages, such as C or C++, and de-

ployed on some real-time operating system (OS) platform,

such as VxWorks, QNX, OS-9 and RTAI+Linux. The ob-

vious reasons for these choices are among requirements to

hard real-time performance; efficiency of computation with

short cycle times; and latency tolerance on the time scale of

microseconds.

Dallefrate et al. (2005) [4] used RTAI+Linux to control the

Mitsubishi PA10 robot at the motion control level in 1 kHz

over Arcnet.

Kubus et al. (2010) [5] modified Stäubli controllers and

gained external joint level position control rates of 10 kHz

and 250Hz from a QNX system on a standard PC.

Buys et al. (2011) [6] present a teleoperation setup us-

ing two KUKA Light-Weight Robots (LWR) coupled to

a Willow Garage Personal Robot (PR2). The two KUKA

LWR robots are controlled over the KUKA Fast Research

Interface (FRI) (Schreiber et al. (2010) [7]) for the KUKA

KRC2LR industrial controller from an external control unit

running RTAI+Linux. The communication is based on the

UDP protocol and has a configurable communication rate

of up to 1 kHz. The application was integrated using the

two component based robotic frameworks OROCOS (Open

Robot Control Software) (Bruyninckx (2001) [8] and Bruyn-

inckx et al. (2003) [9]) and ROS (Robot Operating System)

(Quigley et al. (2009) [10]).

A contemporary overview of the directly available low-

level accessibility in some industrial robot controllers can be

Workshop on Robot Motion Planning: 
Online, Reactive, and in Real-time
2012 IEEE/RSJ International Conference on 
Intelligent Robots and Systems, IROS 2012
Vilamoura, Algarve, Portugal, October 7-12, 2012



found in Kröger and Wahl (2010) [11].

B. Motivation and Goals

The work underlying this paper is motivated by the desire

for making quick prototype development of real-time, sensor-

based robotics applications in a laboratory setting with

industrial robots. Our main application domain is industrial

manufacturing automation, and all laboratory projects in-

volve industrial robots for various types of tasks, ranging

from standard offline programmed robot control to sensor-

based real-time trajectory generation.

The presented work started out as a simple need for ex-

perimenting with motion control interfacing, and developed

into the robot control framework we call PyMoCo. When

developing real-time robotic applications, there are many

demanding issues involved. We aim at addressing two of

these:

• Maintenance and knowledge of specialized real-time

operating systems and platforms (hardware and soft-

ware).

• Development of C/C++ applications on real-time en-

abled software frameworks or platforms.

The goals of the presented work were to establish a

sufficiently stable real-time framework which is:

• based on a stock GNU/Linux kernel and a freely avail-

able operating system,

• and using a high-level scripted programming language

in pure user-mode.

Obtaining these two goals may have driven our develop-

ment away from supplying directly usable industrial solu-

tions. On the other hand it has been the enabling factor for

having many researchers as well as projects making progress

in advanced sensor-based robot control applications.

The specific choices of using stock Real-Time Linux1 ker-

nels with the Debian/Ubuntu operating systems and Python

as the programming language were well-considered in terms

of previous experiences and expertise.

As will be demonstrated later, see Section III, there is not

much effect on the performance from using the Real-Time

Linux kernel compared to using a standard Linux kernel.

The major concern towards real-time performance regards

the Python run-time efficiency and the implementation of

PyMoCo. While there exist a possibility, however remote,

that Real-Time Linux may some day guarantee an upper

bound to latency, the Python run-time system in its current

form, and possibly far into the future, does not possess hard

real-time quality.

The efficiency of using Python as a development lan-

guage, and even as an end-target platform has been well

known for some time (van Rossum (1998) [12]). Further,

the general scientific computational performance of Python

is well document by many papers and projects; see e.g. the

comprehensive paper by Cai et al. (2005) [13].

It is the purpose of this paper to give an overview of Py-

MoCo at the design and architectural level and to convey an

1https://rt.wiki.kernel.org/

impression of its level of feasibility as a software technology

for real-time trajectory generation in prototype development

of sensor-based applications of industrial robots.

C. Paper Outline

The remainder of this paper is outlined as follows. An

overview of PyMoCo is presented in Section II, performance

test setup and results are presented and discussed in Sec-

tion III, and general discussion and mention of further work

is presented in Section IV.

II. PYMOCO OVERVIEW

PyMoCo is a free and open source2 software framework

implemented entirely in Python, using the efficient NumPy3

library for numerical computations. This section gives an

overview of the architectural structure of PyMoCo.

The development of PyMoCo has been proceeding over

the past five years and by now amount to some 4500

lines of Python source code4. It includes back-ends to two

different robot types: A software-modified Universal Robots5

controller and hardware-modified Nachi Robotics AX10 and

AX20 controllers.

A. Applications

Though PyMoCo is a work in progress it has played a

central role in many manufacturing automation prototype

projects at our research laboratories.

The dual robot, real-time sensor-based sewing cell de-

scribed by Schrimpf et al. (2012) [14] has a setup that uses

PyMoCo trajectory generators.

Lind (2012) [15] used PyMoCo in the development of a

joint offset calibration method for industrial robots.

Tingelstad et al. (2012) [16] used PyMoco for a tight

tolerance compliant assembly task of critical aero engine

components.

Schrimpf et al. (2011) [17] used PyMoCo for a real-time

sensor-based control system with multiple sensors in a line-

following application.

Lind and Skavhaug (2011) [18] used PyMoCo’s

ToolLinearController trajectory generator intensively for a

real-time emulated production system setup involving several

robots.

B. Architecture and Design

The PyMoCo run-time provides three core interfaces to the

trajectory generation and application level systems. These are

described in the following.

1) RobotDefinition Interface: is a placeholder for all static

information about the robot in use. It provides such infor-

mation as static link transforms; joint transform parameters;

translators between different joint spaces: actuator, encoder,

and serial; the home pose of the robot; and it is a factory for

a set of joint transform function objects for the robot.

2PyMoCo can be branched from Launchpad: https://launchpad.
net/pymoco

3http://numpy.org/
4Measured using David A. Wheeler’s ’SLOCCount’ http://www.

dwheeler.com/sloccount/.
5http://www.universal-robots.com/

https://rt.wiki.kernel.org/
https://launchpad.net/pymoco
https://launchpad.net/pymoco
http://numpy.org/
http://www.dwheeler.com/sloccount/
http://www.dwheeler.com/sloccount/
http://www.universal-robots.com/


2) FrameComputer Object: is the computational entity

for all kinematics computation. It is currently a single,

unspecialized class for unified kinematics computation for

all robot structures. For joint transform objects and static

link transforms, it relies on information retrieved from the

RobotDefinition interface at construction time.

3) RobotFacade Interface: is the main interface covering

the robot specific backend subsystem. Ultimately, in the

backend subsystem, there is a connection to the motion

controller entity of the operating robot. At any time, some

trajectory generator must be answering real-time requests

propagated from the robot motion controller through the

robot facade subsystem.

For illustrating the relationships of entities in setups for

real-time trajectory generation and robot application control

involving PyMoCo, two UML object diagrams are shown

and described in the following.

PyMoCo Runtime

Application Level

tlc:ToolLinearController

Native Robot Controller

rob_def:RobotDefinition

cm:ControllerManager

simple_app:SimpleApplication

rob_fac:RobotFacade

mc:NativeMotionController

fc:FrameComputer

Fig. 1. UML object diagram giving an overview of a simple PyMoCo
application, utilizing built-in trajectory generators managed by a Controller-
Manager object from PyMoCo.

The most simple runtime setup using PyMoCo for robot

control, illustrated by the UML object diagram in Fig. 1,

uses an object of the ControllerManager class, included

with PyMoCo. The ControllerManager class is managing

the switch of trajectory generators at the request of the

application code, ensuring that the switch will not skip a

control cycle request from the motion control level.

In the diagram in Fig. 1 weak or temporary associations

are represented by dashed lines and more persistent object

associations are illustrated by solid lines. The trajectory gen-

erator is exemplified by an object of the ToolLinearController

class. It uses the core PyMoCo entities and provides its

operational interface to a simple application; which is not

specified by PyMoCo. The simple application, developed

and provided by the user, thus only has to interface with

the ControllerManager object and the trajectory generator

objects that it requests from the controller manager.

Fig. 1 also indicates a layered structure, where the native

robot controller containing the motion controller is lowest,

the PyMoCo run-time system is in the middle, and the

application level at the top. In a simple setup as the one

illustrated, PyMoCo may be considered more as a software

service than a software framework, since the client system,

i.e. the simple application, is cleanly separated from the

PyMoCo code.

The specific set of trajectory generators that are managed

by the controller manager are the ones supplied with Py-

MoCo, and they will be discussed shortly in Section II-C.

Application Level

PyMoCo Runtime

Native Robot Controller

rob_def:RobotDefinition

custom:TrajectoryGenerator

pc:ProcessController

sensor1:SensorSystem

ice:IceConnector

app:ApplicationControl

rob_fac:RobotFacade

mc:NativeMotionController

sensor2:SensorSystem

ros:ROSConnector

fc:FrameComputer

Fig. 2. Overview of an advanced PyMoCo application, utilizing the
core PyMoCo objects and implementing custom trajectory generators with
PyMoCo resources.

A more advanced, and realistic setup for sensor-based real-

time trajectory generation, is illustrated in Fig. 2. It shows an

application control at the application level which is strongly

integrated with network communication systems, illustrated

by connectors over ZeroC Ice
TM

(Henning (2004) [19]) and

ROS; process control; sensor systems which naturally con-

nect externally; and with a custom trajectory generator. The

custom trajectory generator is developed using the PyMoCo

software framework resources and takes on the real-time

obligations toward the pertinent robot motion controller

through the robot facade.

 : ToolLinearController

 : RobotFacade

 : FrameComputer

 : RobotDefinition

 : MotionController

2: get_joint_pos

2

3.1: get_flange_pose

3.1

1: moco_notify

1

4: compute_joint_step4

5: set_joint_increment

5

6: : serial2encoder

6

7: encoder_setpoint

7
0: control_cycle_start

0

3.2: get_inverse_jacobian 3.2

Fig. 3. The real-time cycle illustrated as a UML collaboration diagram
among core PyMoCo entities, the robot motion controller, and a trajectory
generator (of the class ToolLinearController).

The detailed mechanisms of the control cycle involving the

core elements of PyMoCo may be perceived from the UML

collaboration diagram in Fig. 3. The focus here is on the

computational real-time cycle from the trajectory generation

level and down, and hence the application logic and control

is not included. The MotionController class is not a real

class, but included for representing the motion controller in

the native robot controller. The trajectory generator used for

illustration here is, again, of the class ToolLinearController.

The control cycle is started by a notification from the

motion controller to the robot facade in PyMoCo; typically



containing a lot of status information such as encoder

readings, velocities, etc. The robot facade propagates the

notification internally to a subscribing trajectory generator,

which then, using PyMoCo run-time facilities, computes a

control step in response. This control step is returned in

serial joint kinematics coordinates to the robot facade, which

translates it to encoder values and then in turn responds to

the motion controller.

C. Included Trajectory Generators

A (real-time) trajectory generator is an entity which ulti-

mately carries the real-time responsibility of timely respond-

ing to the motion controller request for a new control-setpoint

in joint space; or rather the joint encoder space. Neither

the motion controller or the trajectory generators are core

PyMoCo entities.

PyMoCo includes a set of simple trajectory generators.

They cover the typical trajectory generators that are repre-

sented by motion commands in the application platforms of

standard industrial robot controllers. None of the included

trajectory generators implement any advanced strategies for

dealing with arm configuration singularities, joint speed

or acceleration violations, joint limits, or other types of

circumstances that may lead the motion control system to

fail. Self-motion, or internal, singularities are dealt with by

using a configurable singular value cutoff in the inverse Ja-

cobian computation; which is probably the simplest possible

strategy.

The most common trajectory generators in standard robot

controller are included: joint space linear motion, tool space

linear motion, and real-time correction-responsive tool space

linear motion. An additional two real-time responsive tra-

jectory generators are included, which are rarely found in

standard robot controllers, but immensely useful in real-time

sensor-based robot control: tool space velocity motion and

joint space velocity motion. The tool space velocity generator

is the most frequently used in real-time sensor-based robot

control applications at our laboratories.

III. REAL-TIME PERFORMANCE

The high flexibility and versatility of Python as an appli-

cation platform for robot control, and as the implementation

language of PyMoCo alike, come at the cost of compu-

tational performance and real-time quality. The real-time

performance of a PyMoCo-based application is thus crucial

to investigate. It is the outcome of such an investigation

which will clarify whether PyMoCo is usable and feasible,

and, if at all, for which applications and robots.

This section presents results of an experimental setup

based on the Universal Robots controller. The Universal

Robots UR5 robot is used extensively in our laboratories,

since it may be externally controlled and exhibits fairly low

control delay and short motion response time; see Lind et al.

(2010) [20].

Schrimpf et al. (2012) [21] compares three different setups

for real-time trajectory generation; one of which is PyMoCo

and the others based on OROCOS kinematics. Though their

experiments are performed on one PC using local loop

back networking, and thus do not measure the over-the-wire

performance, the comparison is instructive. The purpose of

the experiments presented in this section is different, in that it

aims at making absolute, over-the-wire, realistic performance

tests that are valid for PyMoCo-based trajectory generation

applications.

A. Experiment Setup

The motion controller in the Universal Robots controller

is interfaced at 125Hz, i.e. a control period of 8ms, and

requires a response in 4ms. In the real controller, the native

application platform and trajectory generator can be shut

down, and a custom “router” application started. This router

application listens for external connections over TCP, and

mediates contact with the motion controller internally in

the robot controller. The router application, representing the

motion controller, can be emulated on an ordinary PC, the

purpose of which it is to log the response times from a

PyMoCo application running off another PC and connecting

through a switch.

All hardware used is consumer grade and not of highest

performance. Two PCs, both with an Intel i7 processor

are used for performance measurements, connected through

a standard 100Mbit s−1 switch, and using the on-board

Ethernet cards. The most important hardware to detail is

the PC running the PyMoCo application. It is an Intel i7-

860 processor running at 2.80GHz with four cores and two

threads per core.

Both PCs use the stock GNU/Debian Linux systems with

Preempt-RT patched kernels of version 3.2.0-3-rt-686-pae;

i.e. Real-Time Linux kernels. The most important software

versions to mention are Python, 2.7.3rc2, and NumPy, 1.6.2-

1. All software and kernels involved are taken from the

official Debian testing repositories6.

Starting from a standard Debian desktop installation, a

checklist of simple tweaks to ensure the best possible real-

time performance was followed:

1) Switch to single user mode. ($ telinit 1)

2) CPU frequency scaling should be set to

“performance”. ($ cpufreq-set -c [0..7]

-g performance)

3) Disable garbage collection in the Python

code for the real-time critical computations.

(gc.disable()/gc.enable())

4) Put the control process in a real-time scheduler queue.

($ chrt 99 ...)

5) Run the RT-critical processes from a remote login-

shell. ($ ssh ...)

6) Boot the Real-Time Linux kernel.

All experiments were conducted at a length of 100 000

samples, which at 125Hz amounts to about 13min running

time.

6http://ftp.debian.org/debian/dists/testing/

http://ftp.debian.org/debian/dists/testing/


B. Best Condition Performances

The most important experiments were to measure the

inherent response time of the PyMoCo run-time, by using

the ZeroVelocityController, and to performance test the two

most useful of the included trajectory generators: ToolVeloci-

tyController and ToolLinearController. All experiments were

executed under the best obtainable real-time conditions, as

per the check list in Section III-A.

0.0006 0.0008 0.0010 0.0012 0.0014 0.0016 0.0018 0.0020 0.0022 0.00240
500

1000
1500
2000
2500
3000
3500
4000
4500

Co
un

t [
]

Zero Velocity Controller

0.0006 0.0008 0.0010 0.0012 0.0014 0.0016 0.0018 0.0020 0.0022 0.00240
2000
4000
6000
8000

10000

Co
un

t [
]

Tool Velocity Controller

0.0006 0.0008 0.0010 0.0012 0.0014 0.0016 0.0018 0.0020 0.0022 0.0024
Respons time [s]

0
2000
4000
6000
8000

10000
12000

Co
un

t [
]

Tool Linear Controller

Response times for 100k samples

Fig. 4. Response time distribution for three different controllers. Average
response time is marked by a vertical blue line and worst-case is marked
by a vertical red line.

The results are visually observable from Fig. 4. Statistical

summaries of the response time samples are shown in Table I.

Trajectory Generator Worst [s] Average [s] Std. dev. [s]

ZeroVelocityController 0.00144 0.00115 0.00010

ToolVelocityController 0.00174 0.00149 0.00006

ToolLinearController 0.00236 0.00201 0.00008

TABLE I

STATISTICS OF MEASUREMENTS UNDER BEST REAL-TIME CONDITIONS.

These results show that the ToolLinearController is com-

putationally much heavier than the ToolVelocityController;

which was expected since it performs various checks along

its path to control bounded acceleration ramp-up and ramp-

down of the velocity. More importantly, the results also

show that both of the usable controllers are well within

the 4ms response time required by the Universal Robots

motion controller. The inherent response time of PyMoCo

indicated by the worst-case response time of the ZeroVe-

locityController gives the impression of the availability of

control computation time for any useful trajectory generator.

In case of a required 4ms response time, there is of the order

of 2.5ms time available for any trajectory generator in each

control cycle.

C. DH-Kinematics Performance

PyMoCo has a native kinematics formulation which is

flexible for specifying separately static link transforms and

joint transform functions. However, a DH formulation of the

kinematics is also supported, reducing the number of matrix

multiplications in the forward kinematics computation. The

DH formulation was used in one run with the ToolVeloci-

tyController under the same conditions as the ones used in

Table I. The comparable statistical results are seen in Table II

Kinematics Worst [s] Average [s] Std. dev. [s]

PyMoCo 0.00174 0.00149 0.00006

DH 0.00180 0.00151 0.00007

TABLE II

MEASUREMENT OF KINEMATICS IN DH FORMULATION.

It turned out that the DH formulation, contrary to the

expected, was slightly inferior to the standard formulation

in PyMoCo. This can be traced to NumPy being relatively

inefficient in assigning matrix element compared to multi-

plying matrices.

D. System Tweak Performance Effects

The last experiments addressed the effects of individual

omission of the various real-time enhancement tweaks, short-

listed in Section III-A. Results are given in Table III.

Tweak Worst [s] Average [s] Std. dev. [s]

All tweaks 0.00174 0.00149 0.00006

- Single user 0.00249 0.00206 0.00009

- CPU freq. sched. 0.00265 0.00212 0.00007

- Disable GC 0.00223 0.00156 0.00009

- RT scheduling 0.00203 0.00155 0.00005

- RT kernel 0.00183 0.00125 0.00005

TABLE III

EFFECT OF VARIOUS TWEAKS ON REAL-TIME PERFORMANCE.

It is observed from the table that all tweaks have signifi-

cant effect on the worst-case performance. The lower average

and higher worst-case response times of the standard kernel

are natural, since the low-level real-time enhancements in

the real-time kernel sacrifice some computational efficiency

for gaining lower worst-case latency. The fact that the

performance difference between a standard and a real-time

kernel is so low is evidence of the flow of the real-time

patches into the mainline Linux kernel over the recent years.

IV. DISCUSSION AND FURTHER WORK

This paper has presented an overview of the structure of

PyMoCo, a flexible, Python-based software framework for

trajectory generation and motion controller interfacing.

Various real-time performance experiments for assessing

its usability have been conveyed and the results have been

presented and discussed. Under the presented experiment

conditions, in terms of hardware, software, and system

setup, it can be inferred that PyMoCo may be a usable

software technology for trajectory generation in robot control

applications where the over-the-wire response time limit is

no lower than about some 3ms.



The main contribution of PyMoCo is to provide users with

a very flexible framework for building real-time sensor-based

robot control applications at the laboratory prototyping stage.

Many laboratory prototyping projects have already utilized

PyMoCo, and it is considered good for learning and fast

prototyping. However, being tied to the Python language and

the Python run-time platform, it has no outlook of becoming

industrially real-time reliable.

The computational performance of contemporary CPUs

together with the current implementation and design of Py-

MoCo is the limiting factor for its use in various setups. For

instance, it is currently precluded that a KUKA LWR could

be controlled by a PyMoCo-based application over FRI with

maximum control rate. However, with CPU performance

increasing over time, such setups may be achievable for

PyMoCo in a not too distant future.

Notwithstanding the automatic performance gains of fu-

ture CPUs, there are a whole range of possibilities for

increasing the inherent performance of a pure Python ap-

plication. These range from downright porting of functional

code to C/C++ extension modules, whereby some flexibility

may be lost; over Cython (Behnel et al. (2011) [22]) for

automated translation and compilation of computationally

critical code blocks; with PyPy, a very fast re-implementation

of the Python run-time; to simply using more optimal and

specialized technologies within PyMoCo, e.g. integrating

PyKDL for kinematics computations as demonstrated by

Schrimpf et al. (2012) [21].

Among useful and functional features that will be ad-

dressed in the future work with PyMoCo are facilities for

trajectory blending. The methods described by Lloyd and

Hayward (1993) [23] and Volpe (1993) [24] are under

consideration.

REFERENCES

[1] J. D. Schutter, T. D. Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aertbe-
liën, K. Claes, and H. Bruyninckx, “Constraint-based task specification
and estimation for sensor-based robot systems in the presence of
geometric uncertainty,” International Journal of Robotics Research,
vol. 26, no. 5, pp. 433–455, May 2007.

[2] W. Decré, “Optimization-Based Robot Programming with Application
to Human-Robot Interaction,” Ph.D. dissertation, Katholieke Univer-
siteit Leuven, 2011.

[3] Euron, “Sectorial Report on Industrial Robot Automation,” Euro-
pean Robotics Network, Tech. Rep., July 2005, http://www.euron.org/
miscdocs/docs/euron2/year2/dr-14-1-industry.pdf.

[4] D. Dallefrate, D. Colombo, and L. M. Tosatti, “Development of robot
controllers based on PC hardware and open source software,” in
Seventh Real-Time Linux Workshop, Nov. 2005. [Online]. Available:
http://www.realtimelinuxfoundation.org/events/rtlws-2005/ws.html

[5] D. Kubus, A. Sommerkorn, T. Kröger, J. Maaß, and F. M. Wahl,
“Low-level control of robot manipulators: Distributed open real-time
control architectures for stäubli rx and tx manipulators,” in ICRA 2010

Workshop on Innovative Robot Control Architectures for Demanding

(Research) Applications, D. Kubus, K. Nilsson, and R. Johansson,
Eds. Technical University of Braunschweig, 2010, pp. 38–45.
[Online]. Available: http://www.rob.cs.tu-bs.de/en/news/icra2010

[6] K. Buys, S. Bellens, W. Decre, R. Smits, E. Scioni, T. D. Laet,
J. D. Schutter, and H. Bruyninckx, “Haptic coupling with augmented
feedback between two KUKA Light-Weight Robots and the PR2 robot
arms,” in International Conference on Intelligent Robots and Systems.
IEEE/RSJ, Sept. 2011, pp. 3031–3038.

[7] G. Schreiber, A. Stemmer, and R. Bischoff, “The Fast Research
Interface for the KUKA Lightweight Robot,” in ICRA 2010 Workshop

on Innovative Robot Control Architectures for Demanding (Research)

Applications, D. Kubus, K. Nilsson, and R. Johansson, Eds.
Technical University of Braunschweig, 2010, pp. 15–21. [Online].
Available: http://www.rob.cs.tu-bs.de/en/news/icra2010

[8] H. Bruyninckx, “Open Robot Control Software: the OROCOS project,”
in International Conference on Robotics and Automation, vol. 3.
IEEE, 2001, pp. 2523–2528.

[9] H. Bruyninckx, P. Soetens, and B. Koninckx, “The Real-Time Motion
Control Core of The Orocos Project,” in International Conference on

Robotics and Automation, vol. 2. IEEE, Sept. 2003, pp. 2766–2771.
[10] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,

R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.
[Online]. Available: http://www.willowgarage.com/sites/default/files/
icraoss09-ROS.pdf

[11] T. Kröger and F. M. Wahl, “Low-level control of robot manipulators:
A brief survey on sensor-guided control and on-line trajectory
generation,” in ICRA 2010 Workshop on Innovative Robot Control

Architectures for Demanding (Research) Applications, D. Kubus,
K. Nilsson, and R. Johansson, Eds. Technical University of
Braunschweig, 2010, pp. 46–53. [Online]. Available: http://www.rob.
cs.tu-bs.de/en/news/icra2010

[12] G. v. Rossum, “Glue It All Together With Python,” in Workshop

on Compositional Software Architectures, C. Thompson, Ed. Object
Services and Consulting, Inc., Feb. 1998. [Online]. Available:
http://www.objs.com/workshops/ws9801/papers/paper070.html

[13] X. Cai, H. P. Langtangen, and H. Moe, “On the performance of
the Python programming language for serial and parallel scientific
computations,” Scientific Programming, vol. 13, no. 1, pp. 31–
56, 2005. [Online]. Available: http://iospress.metapress.com/content/
xawr0dx9xg61nb7q/

[14] J. Schrimpf, L. E. Wetterwald, and M. Lind, “Real-Time System
Integration in a Multi-Robot Sewing Cell,” in International Conference

on Intelligent Robots and Systems. IEEE/RJS, Aug. 2012, accepted.
[15] M. Lind, “Automatic Robot Joint Offset Calibration,” in International

Workshop of Advanced Manufacturing and Automation, K. Wang,
O. Strandhagen, R. Bjartnes, and D. Tu, Eds. Trondheim, Norway:
Tapir Academic Press, June 2012.

[16] L. Tingelstad, A. Capellan, T. Thomessen, and T. K. Lien, “Multi-
Robot Assembly of High-Performance Aerospace Components,” in
IFAC Symposium on Robot Control, 2012, accepted.

[17] J. Schrimpf, M. Lind, and G. Mathisen, “Time-Analysis of a Real-
Time Sensor-Servoing System using Line-of-Sight Path Tracking,”
in International Conference on Intelligent Robots and Systems.
IEEE/RJS, Sept. 2011, pp. 2861–2866.

[18] M. Lind and A. Skavhaug, “Using the blender game engine for
real-time emulation of production devices,” International Journal of

Production Research, vol. 0, no. 0, pp. 1–17, 2011, online available,
iFirst.

[19] M. Henning, “A New Approach To Object-Oriented Middleware,”
IEEE Internet Computing, vol. 8, no. 1, pp. 66–75, Aug. 2004.

[20] M. Lind, J. Schrimpf, and T. Ulleberg, “Open Real-Time Robot Con-
troller Framework,” in CIRP Conference on Assembly Technologies

and Systems, T. K. Lien, Ed. NO-7005, Trondheim, Norway: Tapir
Academic Press, June 2010, pp. 13–18.

[21] J. Schrimpf, M. Lind, A. Skavhaug, and G. Mathisen, “Implementation
Details of External Trajectory Generation for Industrial Robots,” in
International Workshop of Advanced Manufacturing and Automation,
K. Wang, O. Strandhagen, R. Bjartnes, and D. Tu, Eds. Trondheim,
Norway: Tapir Academic Press, June 2012.

[22] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and
K. Smith, “Cython: The Best of Both Worlds,” Computing in Science

Engineering, vol. 13, no. 2, pp. 31 –39, Apr. 2011.
[23] J. Lloyd and V. Hayward, “Trajectory generation for sensor-driven

and time-varying tasks,” International Journal of Robotics Research,
vol. 12, no. 4, p. 380, Aug. 1993.

[24] R. Volpe, “Task space velocity blending for real-time trajectory
generation,” in International Conference on Robotics and Automation,
vol. 2. IEEE, May 1993, pp. 680–687.

http://www.euron.org/miscdocs/docs/euron2/year2/dr-14-1-industry.pdf
http://www.euron.org/miscdocs/docs/euron2/year2/dr-14-1-industry.pdf
http://www.realtimelinuxfoundation.org/events/rtlws-2005/ws.html
http://www.rob.cs.tu-bs.de/en/news/icra2010
http://www.rob.cs.tu-bs.de/en/news/icra2010
http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
http://www.rob.cs.tu-bs.de/en/news/icra2010
http://www.rob.cs.tu-bs.de/en/news/icra2010
http://www.objs.com/workshops/ws9801/papers/paper070.html
http://iospress.metapress.com/content/xawr0dx9xg61nb7q/
http://iospress.metapress.com/content/xawr0dx9xg61nb7q/

